

EFFECT OF THE GnRH ANALOGUE FOR PITUITARY SUPPRESSION ON OOCYTE MORPHOLOGY IN **REPEATED OVARIAN STIMULATION CYCLES**

Assumpto Iaconelli Jr.^{1,2}; Bianca Ferrarini Zanetti ^{1,2;} Daniela Paes de Almeida Ferreira Braga^{1,2}; Amanda Souza Setti^{1,2}; Rita de Cássia Sávio Figueira¹; Edson Borges Jr. ^{1,2;} ¹Fertility Medical Group, Sao Paulo, Brazil, ²Instituto Sapientiae - Centro de Estudos e Pesquisa em Reprodução Assistida, Sao Paulo, Brazil

Ocyte quality is an important factor that influences development and implantation potential of derived oocytes tend to exhibit numerous dysmorphisms, since controlled ovarian stimulation (COS) promotes the growth of follicles that would regress under natural conditions, thus allowing the recovery of oocytes with compromised quality. Pituitary suppression, which is achieved by the administration of gonadotropin-releasing hormone (GnRH) agonists or antagonists, may impact not only hypothalamus-pituitary regulation, but also oocyte development and quality.

OBJECTIVE

To study the effect of the pituitary suppression regimen - GnRH agonist or antago morphology in consecutive intracytoplasmic sperm injection (ICSI) cycles.

INTRODUCTION

		RESULTS		
st - on oocyte	Table 1- Descriptive statistics of oocyte morphological	defects.		
		GnRH Agonist	GnRH Antagonist	р
r	Granulation clusters (%)	6.65 ± 2.67	7.91 ± 2.41	0.725
val between s of 235.78 ± 23.9 days	sER clusters (%)	8.04 ± 1.50	3.77 ± 1.50	0.046
	Vacuoles (%)	6.98 ± 1.88	6.78 ± 1.81	0.937
	Dark cytoplasm (%)	4.37 ± 1.41	0.67 ± 1.27	0.043
6	Perivitelline granules (%)	47.14 ± 3.76	50.65 ± 3.62	0.506
	Large perivitelline space (%)	25.50 ± 3.30	25.59 ± 3.18	0.985
	ZP defects (%)	12.44 ± 2.52	4.69 ± 2.77	0.041
Dark cytoplasm	PB fragmentation (%)	33.08 ± 3.10	32.20 ± 2.99	0.876
	CONCLUSIONS			
	Our findings suggest that the GnRH antagonist inhibitory effect on the ovaries in consecutive ly			
Polar body (PB)	cycles results in optimized ovarian fu	nction, represented by impre	oved oocyte morphology,	which may
fragmentation	lead to a more favorable treatment out	come.		

