
IMPACT OF PATERNAL AGE, EJACULATORY ABSTINENCE LENGTH AND SEMEN QUALITY ON THE OUTCOMES OF INTRACYTOPLASMIC SPERM INJECTION (ICSI) IN AN EGG-SHARING DONATION PROGRAM

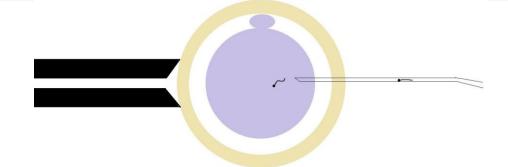
Amanda Setti^{1,2,}, <u>Daniela Paes de Almeida Ferreira Braga</u>^{1,2}, Bianca Zanetti², Livia Vingris¹; Assumpto Iaconelli Jr.¹, Edson Borges Jr.^{1,2}

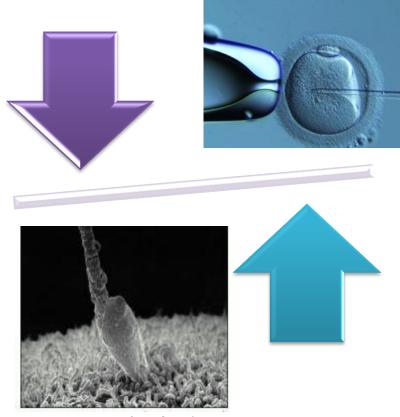
Most of the existing literature focuses on female infertility or on the fertility of both partners

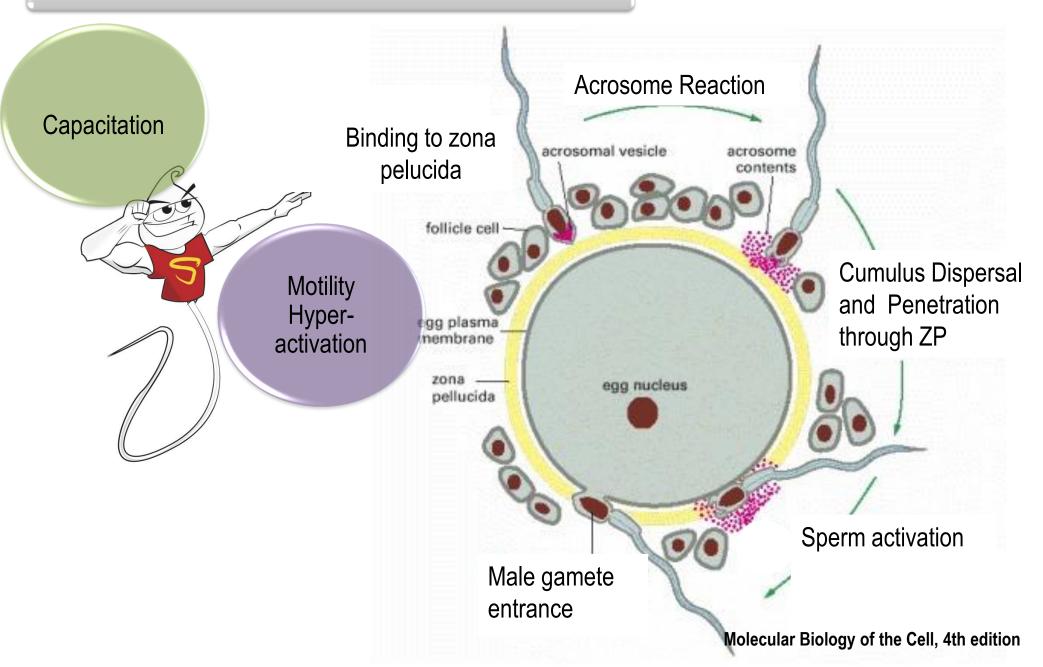
Haploid genome

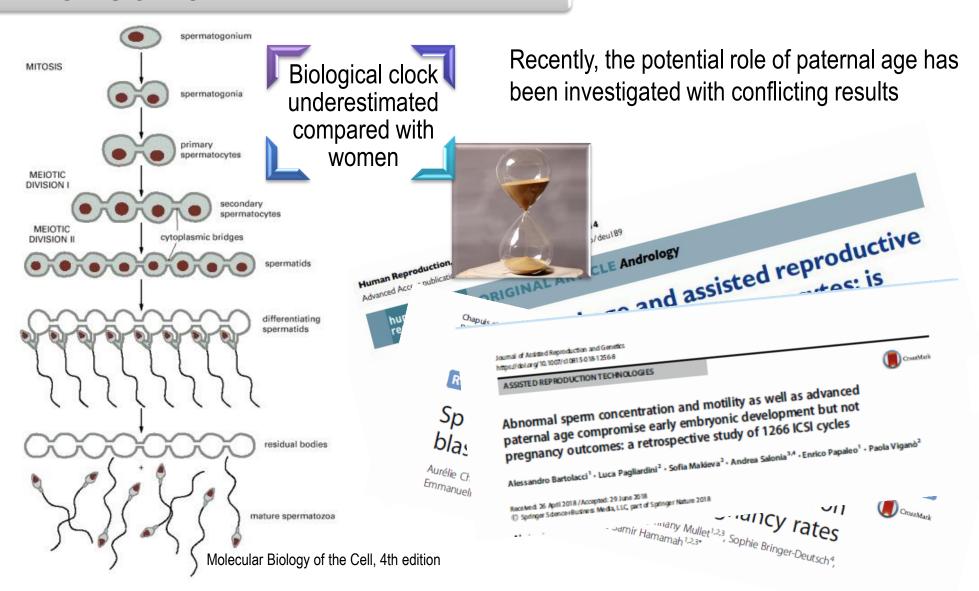
Gamete cleavage

Gamete fusion

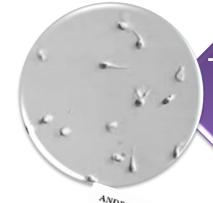







concerns about the contribution of the male factor to IVF outcomes

ICSI improve outcomes over conventional IVF for male factor infertility



Molecular Biology of the Cell, 4th ed.

The same is true for impact of abnormal sperm parameters on embryo implantation

> Chapuis et al. Basic and Clinical Andrology DOI 10.1186/512610-016-0045-4

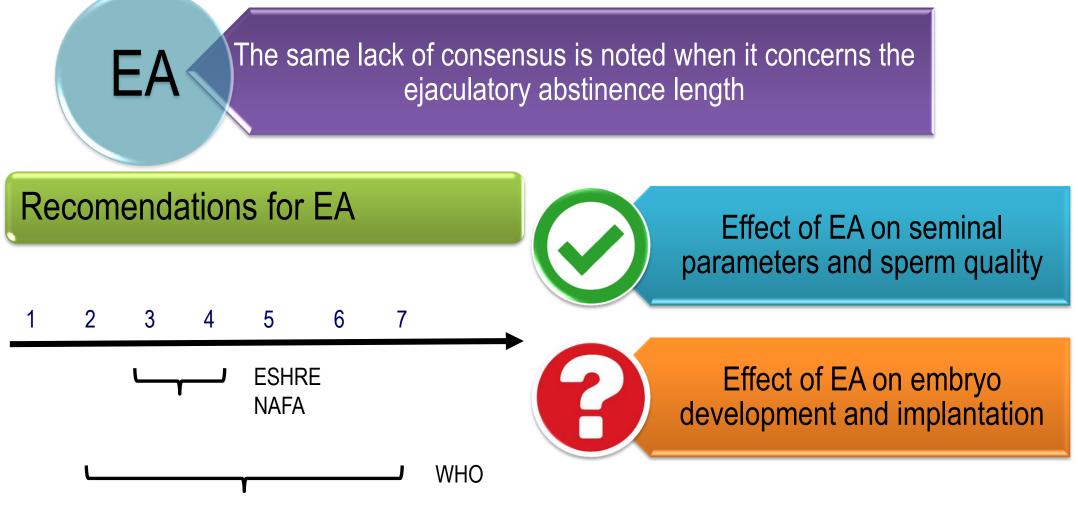
 ANDROLOGIA 30, 91-95 (1998)

 $T_{he\ outcome\ of\ clinical\ pregn}$

plasmic sperm injection is not

R. Mercan, S. E. Lanzendorf, J. Mayer, Jr., A. Nassar, The Howard and Georgeanna Jones Institute for Women's Health, De Andrology. three basic sperm Z.P. Nagy, J. Liu, H. Joris, G. Vern.

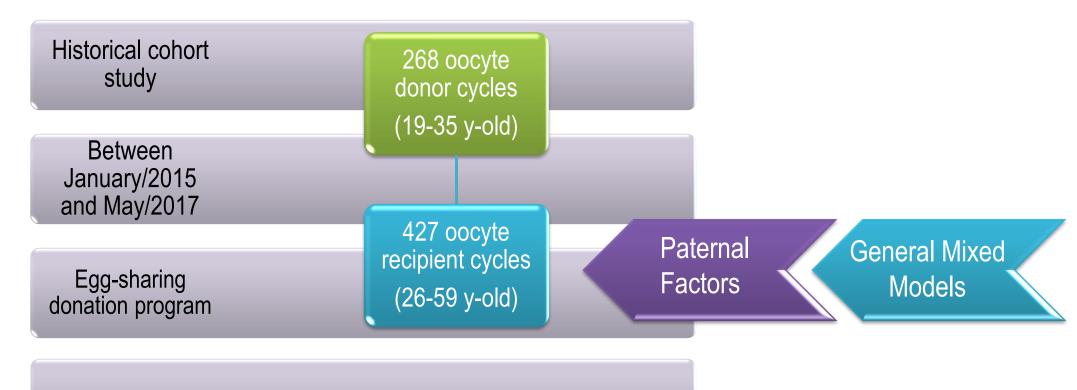
Human Reproduction, Volume 10, Issue 5, https://doi.org/10.1093/oxfordjournals.humrep.


Journal Article

Effect of the male factor on the clinical outcome of intracytoplasmic sperm injection combined with preimplantation aneuploidy testing: observational longitudinal cohort study of 1,219 consecutive cycles

Tal Andrology

The scientific evidences behind these recommendations are limited



OBJECTIVE

To evaluate the effect of paternal age, ejaculatory abstinence length and semen quality on ICSI outcomes in recipients' cycles in an egg-sharing donation program

STUDY DESIGN

Post-hoc power for the sample size: **95.7%.**

Predictive variables

Paternal age

Ejaculatory abstinence length

Sperm count

Progressive sperm motility

Total motile sperm count

Response variables

Fertilization rate

High-quality embryos rate on D3

Normal embryo development rate on D3

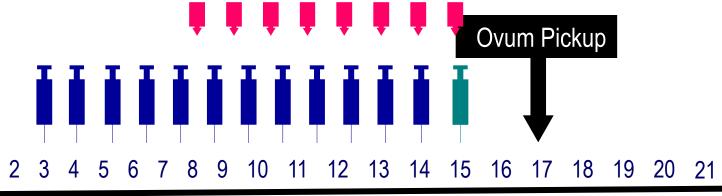
Blastocyst development rate

High-quality blastocysts rate

Implantation rate

Pregnancy rate

Controlled Ovarian Stimulation


GnRH Antagonist

Recombinant FSH

Recombinant hCG

E2

22

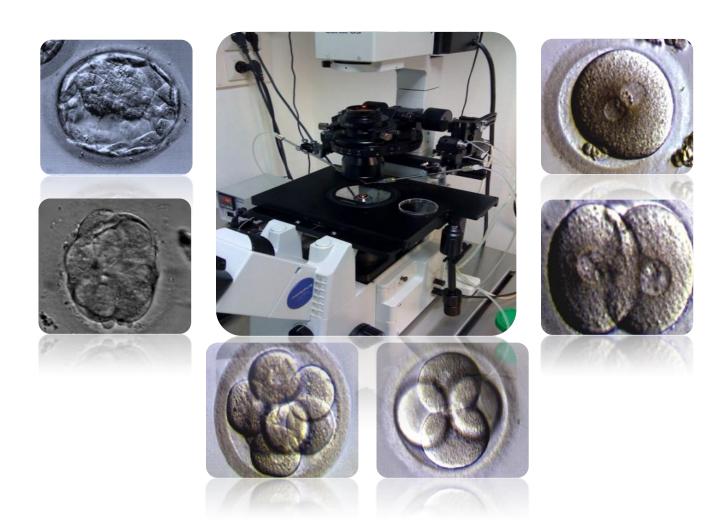
Incubation, denudation and nuclear maturation evaluation

ICSI performed after denudation for donors or 3 hours after warming for recipients

Embryo culture until day 5

One or two blastocysts transferred

Vitrification and the warming: Cryotop method


Semen samples were evaluated according to the threshold values established by the WHO in 2010

Sperm preparation: 2-layered density gradient centrifugation technique

• EMBRYO MORPHOLOGY

Association between paternal age and ICSI outcomes

Variables	Paternal Age			
	В	SE	CI	р
Fertilization rate	-0.276	0.085	-0.442 – -0.110	0.001
High-quality embryos rate on D3	-0.040	0.017	-0.072 – -0.006	0.021
Normal embryo development rate on D3	-2.750	0.8625	-4.441 – -1.059	0.001
Blastocyst development rate	-0.070	0.035	-0.1390.002	0.043
High-quality blastocysts rate	-44.058	20.248	-84.0654.051	0.031
Implantation rate	-0.060	0.007	-0.0750.045	< 0.001
Pregnancy chance	Exp(B): 0.664		0.457 – 0.967	0.033

Association between ejaculatory abstinence length and ICSI outcomes

Variables	Ejaculatory Abstinence Length			
	В	SE	CI	р
Fertilization rate	-0.083	0.847	-0.4420.110	0.765
High-quality embryos rate on D3	-0.003	0.015	-0.006 – -0.001	0.028
Normal embryo development rate on D3	-0.300	0.014	-0.058 — -0.020	0.036
Blastocyst development rate	-0.589	0.243	-1.0670.111	0.016
High-quality blastocysts rate	13.812	88.143	-160.341 – 187.966	0.876
Implantation rate	-0.012	0.003	-0.2030.353	< 0.001
Pregnancy chance	Exp(B): 0.051	1.803	0.001-1.870	0.103

Association between sperm count and ICSI outcomes

Variables	Sperm Count			
	В	SE	CI	р
Fertilization rate	0.075	0.020	0.035 – 0.115	< 0.001
High-quality embryos rate on D3	2.296	7.074	-11.587 – 16.179	0.746
Normal embryo development rate on D3	-0.884	0.568	-1.999 - 0.232	0.120
Blastocyst development rate	2.155	0.884	0.420 – 3.891	0.015
High-quality blastocysts rate	-36.970	27.177	-90.666 - 16.727	0.176
Implantation rate	0.025	0.003	0.020 - 0.031	< 0.001
Pregnancy chance	Exp(B): 0.920	0.167	0.658 - 1.284	0.617

Association between progressive sperm motility and ICSI outcomes

Variables	Sperm Motility			
	В	SE	CI	р
Fertilization rate	-0.003	0.0462	-0.093 – 0.088	0.951
High-quality embryos rate on D3	-1.573	20.270	-41.352 – 38.206	0.938
Normal embryo development rate on D3	0.017	0.077	0.002 – 0.032	0.024
Blastocyst development rate	0.412	0.586	-0.739 - 1.563	0.483
High-quality blastocysts rate	-5.955	5.453	-16.729 - 4.819	0.277
Implantation rate	0.183	0.010	0.163 – 0.204	< 0.001
Pregnancy chance	Exp(B): 1.037	0.031	0.974 - 1.104	0.253

Association between total motile sperm count and ICSI outcomes

Variables	Total Motile Sperm Count			
	В	SE	CI	р
Fertilization rate	-0.007	0.030	-0.065 – 0.051	0.809
High-quality embryos rate on D3	2.841	2.297	-1.667 - 7.350	0.216
Normal embryo development rate on D3	-2.914	2.327	-7.480 - 1.652	0.211
Blastocyst development rate	1.057	0.508	0.060 – 2.054	0.038
High-quality blastocysts rate	9.779	6.442	-2.949 - 22.508	0.131
Implantation rate	0.008	0.003	0.002 – 0.014	0.009
Pregnancy chance	Exp(B):	0.062	0.845 - 1.083	0.475
	0.957			

Fertilization

Paternal age

Embryo development

Embryo implantation

Bias of the effect of maternal age on oocyte quality

Statistical tools: valuable in controlling maternal age

Oocyte donation cycles

Oocyte donation cycles

Egg sharing donation population

VS

Decreased IVF outcomes:

(Frattarelli et al. 2008; Luna et al. 2009)

No effect of paternal age on **IVF** outcomes

(Whitcomb et al. 2011; Begueria et al. 2014; Ghuman et al. 2016)

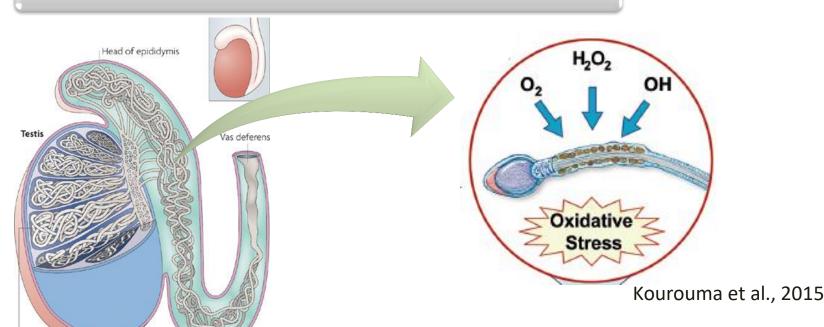
Young fertile oocyte donors

This creates an interesting situation

Oocytes from the same cohort can be compared

The impact of paternal age on the functionality of oocytes derived from infertile-couples can be analysed

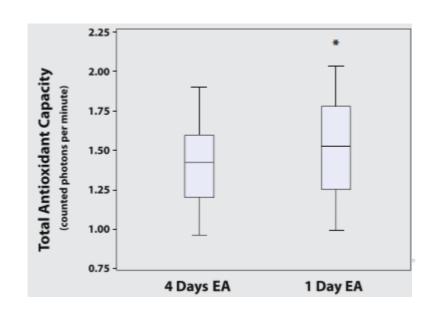
This is different from most other published studies in which data comes from oocyte donor populations


Embryo development and implantation competence

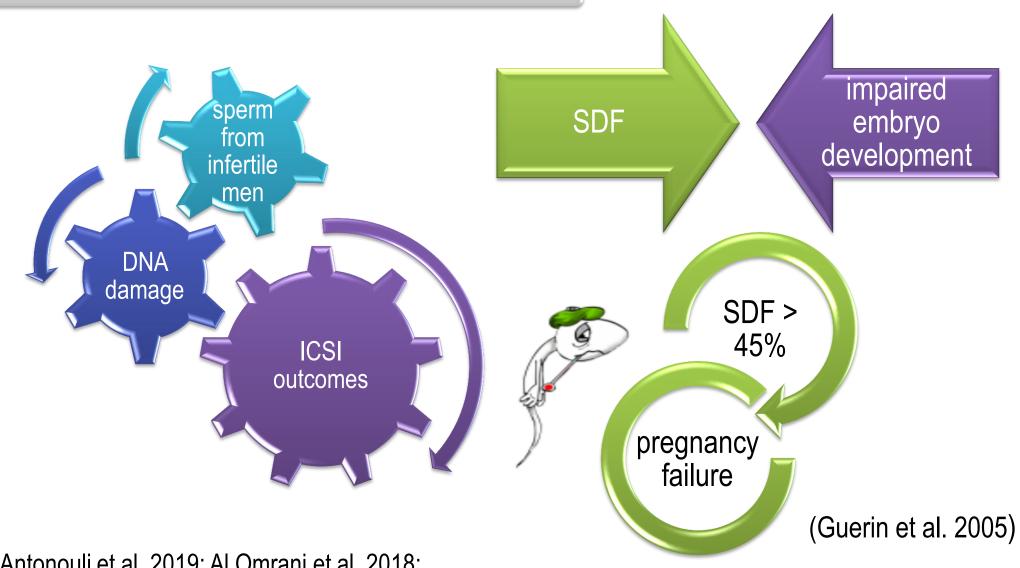
SDF

fertilization, blastocyst formation, implantation, and pregnancy

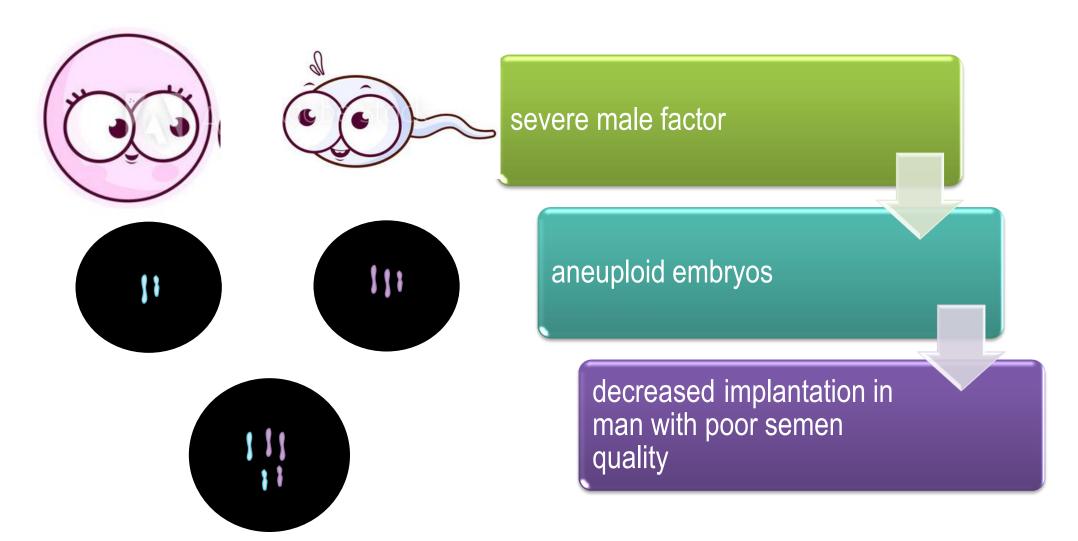
Seminiferous tubules



Nature Reviews | Genetics


Tail of epididymis

Influence of ejaculatory abstinence on seminal total antioxidant capacity and sperm membrane lipid peroxidation


Paul B. Marshburn, M.D., ^{a,b} Allie Giddings, M.D., ^b Stephanie Causby, M.S., ^{a,b} Michelle L. Matthews, M.D., ^{a,b} Rebecca S. Usadi, M.D., ^{a,b} Nury Steuerwald, Ph.D., ^c and Bradley S. Hurst, M.D. ^{a,b}

^a Division of Reproductive Endocrinology and Infertility, ^b Department of Obstetrics and Gynecology, and ^c Cannon Research Center, Carolinas Healthcare System, Charlotte, North Carolina

Antonouli et al. 2019; Al Omrani et al. 2018; Evgeni et al. 2015

CONCLUSION

Increasing paternal age and EA, and poor semen parameters negatively impact ICSI outcomes, from fertilization to pregnancy

Therefore further tracking of the impact of paternal characteristics on ICSI outcomes should be encouraged

Despite paternal age is uncontrollable, and there are not so many things that can be done concerning semen quality, shortening of EA interval could be used as a strategy to optimize ICSI outcomes.

www.fertility.com.br

Few studies focused on the influence of male factors on IVF outcomes

Paternal age

Seminal parameters

Ejaculatory abstinence length

ICSI outcomes

Conflicting results

Confound variables

Fertilization

Embryo development

Implantation

